2 Formulação

Neste trabalho é feito um estudo numérico e experimental de membranas inicialmente axi-simétricas, tendo a geratriz da superfície uma forma inicial qualquer, submetidas a esforços de tração e pressão uniforme. Membranas de material isotrópico e incompressível são consideradas, sendo o material modelado como um material Neo-Hookeano, de Mooney-Rivlin ou de Ogden.

Inicialmente, tendo por base a teoria de membranas apresentada por Green & Adkins (1960), apresenta-se a modelagem matemática do problema. A partir desta modelagem, são obtidas as equações de equilíbrio e condições de contorno, utilizando-se o Princípio da Energia Potencial Estacionária. Estas equações, por serem altamente não lineares, são resolvidas por métodos numéricos como, por exemplo, métodos de integração numérica que transformam o problema de valor de contorno em um problema de valor inicial (Keller, 1968), ou elementos finitos.

2.1. Modelagem matemática para uma membrana axissimétrica

2.1.1. Relações Geométricas

Na modelagem matemática do problema é utilizada a teoria da elasticidade para deformações finitas usando-se notações tensorial e vetorial, como proposto por Green & Adikins (1960). Portanto é apresentada a seguir uma breve explanação desta teoria. Futuras considerações para o caso particular de membranas serão apresentadas no item 2.1.2.

Considere um corpo tridimensional indeformado B_0 em um sistema cartesiano fixo x_i em um instante $t = t_0$. O vetor posição de um ponto P_0 pertencente a B_0 em relação à origem é: onde i_k são os vetores unitários.

Considere que o corpo B_0 sofre uma deformação em um determinado instante *t* e o ponto P_0 move-se para uma nova posição *P*. O vetor posição de *P* será:

$$\mathbf{R} = y_k \mathbf{i}_k \tag{2.2}$$

O vetor deslocamento v é, portanto, dado por:

$$\mathbf{v} = \mathbf{R} - \mathbf{r} = (y_k - x_k)\mathbf{i}_k \tag{2.3}$$

Considerando-se que $\left| \frac{\partial y_i}{\partial x_i} \right| > 0$, pode-se escrever que

$$y_{i} = y_{i}(x_{1}, x_{2}, x_{3}, t)$$

$$x_{i} = x_{i}(y_{1}, y_{2}, y_{3}, t)$$
(2.4)

O corpo B_0 pode também ser descrito em um sistema de coordenadas curvilíneo, θ_i , tal que:

$$\mathbf{x}_i = \mathbf{x}_i(\theta_1, \theta_2, \theta_3) \tag{2.5}$$

onde x_i são valores únicos, diferenciáveis quantas vezes necessárias, exceto para possíveis pontos singulares. Supõe-se que o sistema de coordenadas curvilíneas se move continuamente com o corpo e, quando B_0 é transladado para o estado deformado *B*, tem-se que:

$$\mathbf{y}_i = \mathbf{y}_i(\theta_1, \theta_2, \theta_3, t) \tag{2.6}$$

Assim, em B_0 , o vetor covariante $d\theta^i$ pode ser determinado utilizando-se as relações (2.5), a saber:

$$d\theta^{i} = \frac{\partial \theta^{i}}{\partial x^{i}} \partial x^{i}, \quad dx^{i} = \frac{\partial x^{i}}{\partial \theta^{i}} \partial \theta^{i}, \qquad (2.7)$$

Das equações (2.4) e (2.5), obtém-se:

$$dy^{i} = \frac{\partial y^{i}}{\partial x^{i}} \partial x^{i} = \frac{\partial y^{i}}{\partial \theta^{i}} \partial \theta^{i}, \quad d\theta^{i} = \frac{\partial \theta^{i}}{\partial y^{i}} \partial y^{i}, \quad (2.8)$$

Assim os vetores posição assumem a forma:

$$\mathbf{r} = \mathbf{r}(\theta_1, \theta_2, \theta_3)$$

$$\mathbf{R} = \mathbf{R}(\theta_1, \theta_2, \theta_3, t)$$
 (2.9)

e o vetor deslocamento, a forma:

$$\mathbf{v} = \mathbf{v}(\theta_1, \theta_2, \theta_3, t) \tag{2.10}$$

Os vetores base e os respectivos tensores métricos contravariantes e covariantes (Green & Adinkins, 1960) na configuração indeformada B_0 são definidos, para o sistema de coordenadas curvilíneas θ_i por:

$$\mathbf{g}_{i} = \mathbf{r}, \quad \mathbf{g}^{i} \cdot \mathbf{g}_{j} = \delta_{j}^{i}$$
$$\mathbf{g}_{ij} = \mathbf{g}_{i} \cdot \mathbf{g}_{j} = \frac{\partial x^{r}}{\partial \theta^{i}} \frac{\partial x^{r}}{\partial \theta^{j}}$$
$$\mathbf{g}^{ij} = \mathbf{g}^{i} \cdot \mathbf{g}^{j} = \frac{\partial \theta^{i}}{\partial x^{r}} \frac{\partial \theta^{j}}{\partial x^{r}}$$
(2.11)

De forma similar, os vetores base e os respectivos tensores métricos covariante e contravariante para a configuração deformada *B* são definidos por:

$$\mathbf{G}_{i} = \mathbf{R},_{i} \quad \mathbf{G}^{i} \cdot \mathbf{G}_{j} = \delta_{j}^{i}$$

$$\mathbf{G}_{ij} = \mathbf{G}_{i} \cdot \mathbf{G}_{j} = \frac{\partial y^{r}}{\partial \theta^{i}} \frac{\partial y^{r}}{\partial \theta^{j}}$$

$$\mathbf{G}^{ij} = \mathbf{G}^{i} \cdot \mathbf{G}^{j} = \frac{\partial \theta^{i}}{\partial y^{r}} \frac{\partial \theta^{j}}{\partial y^{r}}$$
(2.12)

O tensor de deformações é definido por (Green & Adinkins, 1960):

$$\gamma_{ij} = \frac{1}{2} (\mathbf{G}_{ij} - \mathbf{g}_{ij})$$
(2.13)

Pode-se interpretar γ_{ij} como sendo o tensor que mede a diferença do quadrado do comprimento de um elemento infinitesimal de arco nos corpos deformado e indeformado, tal que, para as configurações deformada e indeformada, tem-se respectivamente:

$$ds_0^2 = \mathbf{g}_{ij} d\theta^i d\theta^j, \quad ds^2 = \mathbf{G}_{ij} d\theta^i d\theta^j,$$

$$ds^2 - ds_0^2 = 2\gamma_{ij} d\theta^i d\theta^j$$
(2.14)

Três invariantes estão associados ao tensor simétrico de deformações apresentado em (2.13), a saber:

$$I_{1} = \mathbf{g}^{ij} \mathbf{G}_{ij}$$

$$I_{2} = \mathbf{G}^{ij} \mathbf{g}_{ij} I_{3}$$

$$I_{3} = \frac{G}{g}$$

$$G = \left| \mathbf{G}_{ij} \right| \quad g = \left| \mathbf{g}_{ij} \right|$$
(2.15)

2.1.2. Sistemas de coordenadas para membranas axissimétricas

Nesta formulação, assume-se uma completa simetria elástica e geométrica ao longo da espessura da membrana.

Considere um sistema de coordenadas cartesianas, x_i , para o corpo em seu estado indeformado. As coordenadas do corpo em seu estado deformado passam então a ser expressas por y_i referentes ao mesmo sistema cartesiano inicial, como mostra a Figura 2.1.

Figura 2.1 - Configurações indeformada e deformada da membrana

Considere, agora, um sistema de coordenadas curvilíneo (R, θ , S), como representado na Figura 2.1. As coordenadas de um ponto genérico, $P(x^1, x^2, x^3)$, da superfície média da membrana indeformada são dadas por:

$$x^{1} = R(S)\cos(\theta) \tag{2.16}$$

$$x^{2} = R(S)sen(\theta)$$
(2.17)

$$x^3 = Z(S) \tag{2.18}$$

onde *R* é o raio, *Z* é a coordenada vertical do ponto *P*, θ é o ângulo medido a partir da horizontal x^{I} e *S* é o comprimento de arco da geratriz da membrana, referente à membrana em seu estado indeformado. Após a deformação, as coordenadas de um ponto genérico da superfície média da membrana deformada, $p(y^1, y^2, y^3)$, são dadas por:

$$v^{1} = r(S)\cos(\theta + \beta(S))$$
(2.19)

$$y^{2} = r(S) \operatorname{sen}(\theta + \beta(S))$$
(2.20)

$$y^3 = z(S) \tag{2.21}$$

onde *r* é o raio deformado, *z* é a coordenada vertical do ponto *p* no estado deformado, β é a variação angular sofrida pela membrana após a deformação e *s* é o comprimento de arco da geratriz da membrana no seu estado deformado.

2.1.3. Componentes dos tensores métricos da membrana

Em relação ao sistema de coordenadas curvilíneas de referência (θ_1 , θ_2), que, para o caso em questão, são as coordenada representados por S e θ , respectivamente, a primeira forma fundamental para a membrana indeformada fica definida pelas componentes covariantes, $a_{\alpha\beta}$, e contravariantes, $a^{\alpha\beta}$, dos tensores métricos no sistema indeformado, a saber:

$$a_{\alpha\beta} = \frac{\partial x^{\alpha}}{\partial \theta^{\alpha}} \frac{\partial x^{\alpha}}{\partial \theta^{\beta}} \qquad a^{\alpha\beta} = \frac{\partial \theta^{\alpha}}{\partial x^{\alpha}} \frac{\partial \theta^{\alpha}}{\partial x^{\beta}} \qquad \alpha, \beta = 1..2$$
(2.22)

As componentes dos tensores métricos são os gradientes de deformação da membrana e são utilizadas no cálculo dos invariantes de deformação.

Calculando as componentes da equação (2.22), tendo por base as equações (2.16) a (2.18), obtém-se os tensores métricos contravariante e covariante para a membrana no seu estado indeformado, a saber:

$$\mathbf{a}_{\alpha\beta} = \begin{bmatrix} R' + Z'^2 & 0\\ 0 & R^2 \end{bmatrix} \quad \mathbf{a}^{\alpha\beta} = \begin{bmatrix} \frac{1}{R' + Z'^2} & 0\\ 0 & \frac{1}{R^2} \end{bmatrix}$$
(2.23)

onde $\binom{d}{dS} = \frac{d}{dS}$.

O determinante do tensor métrico covariante, a, é dado por:

$$a = \det[a_{\alpha\beta}] = (R'^2 + Z'^2)R^2$$
 (2.24)

As componentes covariantes, $A_{\alpha\beta}$, e contravariantes, $A^{\alpha\beta}$, dos tensores métricos, para a membrana em seu estado deformado, são dadas por:

$$A_{\alpha\beta} = \frac{\partial y^{\alpha}}{\partial \theta^{\alpha}} \frac{\partial y^{\alpha}}{\partial \theta^{\beta}}, \qquad A^{\alpha\beta} = \frac{\partial \theta^{\alpha}}{\partial y^{\alpha}} \frac{\partial \theta^{\alpha}}{\partial y^{\beta}}$$
(2.25)

Desenvolvendo a equação (2.25) com o auxílio das equações (2.19) a (2.21), tem-se:

$$\mathbf{A}_{\alpha\beta} = \begin{bmatrix} r'^{2} + r^{2}\beta'^{2} + z'^{2} & r^{2}\beta' \\ r^{2}\beta' & r^{2} \end{bmatrix} \quad \mathbf{A}^{\alpha\beta} = \begin{bmatrix} \frac{1}{r'^{2} + z'^{2}} & -\frac{\beta'}{r'^{2} + z'^{2}} \\ -\frac{\beta'}{r'^{2} + z'^{2}} & \frac{r'^{2} + r^{2}\beta'^{2} + z'^{2}}{r^{2}(r'^{2} + z'^{2})} \end{bmatrix}$$
(2.26)

Desta forma, o determinante do tensor métrico covariante, A, é dado por:

$$A = \det[A_{\alpha\beta}] = (r'^2 + z'^2)r^2$$
 (2.27)

2.1.4. Invariantes de deformação

As leis constitutivas dos materiais a serem utilizadas na análise do comportamento da membrana, tais como as leis de Mooney-Rivlin e Neo-Hookeana, são em geral escritas em termos dos invariantes de deformação da membrana. Conhecendo-se as componentes de deformação e a lei constitutiva, pode-se obter a função densidade de energia de deformação da membrana, *w*.

Considerando-se a teoria de membranas, tem-se que os invariantes de deformação da superfície média da membrana são dados, em função das componentes dos tensores métricos, por:

$$I_1 = \lambda_3^2 + a^{\alpha\beta} A_{\alpha\beta} \tag{2.28}$$

$$I_2 = \lambda_3^2 \frac{A}{a} a_{\alpha\beta} A^{\alpha\beta} + \frac{A}{a}$$
(2.29)

$$I_3 = \lambda_3^2 \frac{A}{a} \tag{2.30}$$

onde λ_3 é a extensão na direção normal à superfície média da membrana.

Como I_3 é a relação entre os volumes infinitesimais do elemento da membrana deformada e indeformada e sendo o elastômero um material considerado incompressível (Treolar, 1975), tem-se que:

$$I_3 = 1$$
 (2.31)

Aplicando esta condição e substituindo as componentes dos tensores métricos na equação (2.31), obtém-se para a extensão na direção normal à superfície média da membrana a expressão:

$$\lambda_3^2 = \frac{a}{A} = \frac{(R'^2 + Z'^2)R^2}{(r'^2 + z'^2)r^2}$$
(2.32)

Substituindo as expressões apresentadas nas equações (2.23), (2.24), (2.26) e (2.27) nas equações (2.28) e (2.29), tem-se para os outros invariantes de deformação:

$$I_{1} = \frac{r^{2}\beta'^{2} + r'^{2} + z'^{2}}{R'^{2} + Z'^{2}} + \frac{r^{2}}{R^{2}} + \frac{(1 + Z'^{2})R^{2}}{(r'^{2} + z'^{2})r^{2}}$$
(2.33)

$$I_{2} = \frac{R'^{2} + Z'^{2}}{r'^{2} + z'^{2}} + \frac{R^{2} \left(r^{2} \beta'^{2} + r'^{2} + z'^{2}\right)}{r^{2} \left(r'^{2} + z'^{2}\right)} + \frac{r^{2} \left(r'^{2} + z'^{2}\right)}{R^{2} \left(R'^{2} + Z'^{2}\right)}$$
(2.34)

2.2.

Obtenção das equações de equilíbrio através do Princípio da Energia Potencial Estacionária.

Figura 2.2- Coordenadas e possíveis carregamentos da membrana

onde:

sb - coordenada do extremo inferior da membrana deformada

- st coordenada do topo da membrana deformada
- St coordenada do topo da membrana indeformada
- H espessura da membrana indeformada
- h espessura da membrana deformada
- f força distribuída ao longo do bordo superior da membrana
- m momento distribuído ao longo do bordo superior da membrana
- β_t rotação máxima em torno do eixo vertical
- s1- coordenada da altura de líquido na membrana deformada
- S1 coordenada da altura de líquido na membrana indeformada

2.2.1. Energia potencial total: Π

A energia potencial é, por definição, a diferença entre a energia elástica de deformação, *E*, e o trabalho realizado pelas forças externas, *P*:

$$\Pi = E - P \tag{2.35}$$

2.2.2. Energia elástica de deformação: *E*

A energia elástica de deformação, E, é obtida pela integração, no volume indeformado, da função densidade de energia de deformação, w, que é o potencial elástico medido por unidade de volume do corpo indeformado, ou seja, está relacionada a uma característica intrínseca do material utilizado. Logo, tem-se que:

$$E = \int_{V} w \, dV \tag{2.36}$$

onde $V \neq o$ volume da membrana no seu estado indeformado.

Considerando-se o material incompressível, a função densidade de energia de deformação depende apenas do primeiro e segundo invariantes de deformação. Considerando-se um material Neo-Hookeano ou de Mooney Rivlin, tem-se:

> Neo –Hookeana $w = C1(I_1 - 3)$ Mooney Rivlin $w = C1(I_1 - 3) + C2(I_2 - 3)$

OUC-Rio - Certificação Digital Nº 9916428/CA

onde, a função densidade de energia de deformação para o material Neo-Hookeano depende apenas de uma constante, C1, enquanto para caracterizar o material dito de Mooney Rivlin, precisa-se determinar duas constantes elásticas, $C1 \in C2$.

Para materiais hiperelásticos levemente compressíveis, a teoria de Ogden tem sido bastante utilizada. Neste caso a energia interna é dada por

$$w = \sum_{i=1}^{n} \mu_n \frac{\left(\lambda_1^{\alpha_n} + \lambda_2^{\alpha_n} + \lambda_3^{\alpha_n} - 3\right)}{\alpha_n}$$

onde λ_i são as extensões principais e μ_n , α_n e *n* estão relacionados com as propriedades elásticas do material.

Considerando que a membrana indeformada tenha seções transversais circulares e observando o corte longitudinal da membrana apresentado na Figura 2.2, tem-se para o volume infinitesimal:

$$dV = 2\pi R H dS \tag{2.37}$$

onde $H \neq a$ espessura da membrana no estado indeformado.

Portanto, tem-se que:

$$E = \int_{Sb}^{St} w 2\pi RH \, dS \tag{2.38}$$

2.2.3. Trabalho das forças externas

Para formulação do problema em questão, as possibilidades de carregamento consideradas são: momento *m* e força trativa *f* distribuídos ao longo do bordo superior da membrana ($r=R=r_t$), pressão hidrostática interna p_i e externa p_e , como também pressão interna uniforme *p*.

2.2.3.1. Trabalho realizado por uma pressão uniforme interna:

A pressão interna uniforme realiza trabalho sobre a variação de volume sofrida pela membrana, ou seja:

$$p\Delta V = p(v - V) \tag{2.39}$$

$$= p \left[\int_{z_l}^{z_l} \pi r^2 dz - \int_{Z_l}^{Z_l} \pi R^2 dZ \right]$$
(2.40)

$$= p \left[\int_{Sl}^{Sl} \left(\pi r^2 z' - \pi R^2 Z' \right) dS \right]$$
(2.41)

onde V e v são os volumes da membrana em seu estado indeformado e deformado,

respectivamente e ()'= $\frac{d()}{dS}$.

2.2.3.2. Trabalhos realizados pelo momento torsor e força trativa

Considerando o momento torsor, m, e a força trativa, f, agindo uniformemente ao longo do bordo superior da membrana, tem-se:

$$M\beta|_{St} = 2\pi Rm\beta|_{St} \tag{2.42}$$

$$F[z-Z]|_{st} = 2\pi R f[z-Z]|_{st}$$
(2.43)

2.2.3.3. Trabalho realizado pelas pressões hidrostáticas interna e externa.

Considerando-se uma altura genérica de líquido no interior da membrana indeformada, S_l , e que o líquido externo age sobre toda a membrana, tem-se que:

$$pi = \frac{\rho_i g}{2} \int_{Sb}^{Sl} r^2 z z' dS \qquad (2.44)$$

$$pe = -\frac{\rho_e g}{2} \int_{Sb}^{St} r^2 z z' dS \qquad (2.45)$$

sendo g a aceleração da gravidade, $\rho i e \rho e$ as massas específicas dos líquidos existentes na parte interna e externa da membrana, respectivamente.

Logo, substituindo os valores encontrados nas equações (2.38) a (2.45) na equação (2.35), tem-se para a energia potencial total:

$$\Pi = \int_{Sb}^{St} w \, 2\pi \, RH \, dS - p \int_{Sl}^{St} \left(\pi r^2 z' - \pi R^2 Z' \right) dS - \frac{\rho_i g}{2} \int_{Sb}^{Sl} r^2 z z' \, dS + \frac{\rho_e g}{2} \int_{Sb}^{St} r^2 z z' \, dS - 2\pi R m \beta \Big|_{St} - 2\pi R f \Big[z - Z \Big] \Big|_{St}$$
(2.46)

Para se ter formalmente uma única integral (funcional), é necessário igualar os limites das integrais e, para que isso seja possível, são utilizadas funções Heaviside, H. Tem-se assim que:

$$\Pi = \int_{Sb}^{St} w 2\pi R H \, dS - \mathbf{H}(S - S_l) p \int_{Sb}^{St} (\pi r^2 z' - \pi R^2 Z') dS - \mathbf{H}(-S + S_l) \frac{\rho_i g}{2} \int_{Sb}^{St} r^2 z z' \, dS + \frac{\rho_e g}{2} \int_{Sb}^{St} r^2 z z' \, dS - 2\pi R m \beta |_{St} - (2.47)$$

$$2\pi R f [z - Z]|_{St}$$

Finalmente, tem-se para a energia potencial total a seguinte expressão:

$$\Pi = \int_{Sb}^{St} w 2\pi RH - \mathbf{H}(S - S_{l}) p \left(\pi r^{2} z' - \pi R^{2} Z'\right) dS$$

$$\int_{Sb}^{St} - \mathbf{H}(-S + S_{l}) \frac{\rho_{l}g}{2} r^{2} z z' \frac{\rho_{e}g}{2} r^{2} z z' dS$$

$$- 2\pi Rm\beta|_{St} - 2\pi Rf[z - Z]|_{St}$$
(2.48)

2.3. Variação da energia potencial total para obtenção das equações governantes

Aplicando-se o princípio da energia potencial total estacionária, tal que $\delta \Pi = 0$, e utilizando-se integração por partes, obtém-se as equações diferenciais e condições de contorno que descrevem o comportamento da membrana.

2.3.1. Equações diferenciais

$$2\pi \left\{ RHw_{r} - (RHw_{r'})^{'} \right\} = p2\pi H(S - S_{1})(rz') + \left[\frac{\rho_{i}g}{2} H(-S + S_{1}) - \frac{\rho_{e}g}{2} \right] (2rzz')$$
(2.49)

$$2\pi \{ (\mathbf{R}\mathbf{H}\mathbf{w}_{z'})^{'} \} = p 2\pi \mathbf{H} (\mathbf{S} - \mathbf{S}_{1}) \mathbf{r} \mathbf{r}' + \left[\frac{\rho_{i}g}{2} \mathbf{H} (-\mathbf{S} + \mathbf{S}_{1}) - \frac{\rho_{e}g}{2} \right] (2\mathbf{r}\mathbf{r}'z)$$
(2.50)

$$2\pi \left(\mathrm{RHw}_{\beta'} \right)^{\prime} = 0 \tag{2.51}$$

2.3.2. Condições de contorno

$$2\pi RH\{w_{r'}\}\delta r|_{Sb}^{St} = 0$$

$$\left[2\pi RH(w_{z'}) - p\pi H(S - S_1)(r^2) - \left[\frac{\rho_i g}{2}H(-S + S_1) - \frac{\rho_e g}{2}\right](r^2 z)\right]\delta z|_{Sb}^{St}$$

$$(2.53)$$

$$-2\pi Rf \, \delta z \Big|_{Sb}^{St} = 0$$

$$2\pi RH \Big(w_{\beta'} \Big) \delta \beta \Big|_{Sb}^{St} - 2\pi Rm \delta \beta \Big|_{Sb}^{St} = 0$$
(2.54)

2.4. Modelagem matemática para uma membrana cilíndrica

Tendo em vista que toda a análise experimental será feita com membranas cilíndricas de material polimérico, neste capítulo é feita a particularização da formulação apresentada para uma membrana de forma cilíndrica e de espessura constante. Tem-se, então, para esta forma particular da membrana, que a coordenada S passa a coincidir com a coordenada Z, e simplificações significativas podem ser observadas. Serão considerados apenas esforços de tração e pressão interna uniforme, carregamentos usados nos ensaios experimentais. As particularizações devidas a esta simplificação são apresentadas a seguir.

2.4.1. Sistemas de Coordenadas

Figura 2.3 - Configurações indeformada e deformada da membrana cilíndrica

Para a particularização da formulação apresentada para membranas de revolução, o sistema de coordenadas curvilíneo a ser considerado é um sistema de coordenadas cilíndrico (R, θ , Z). Assim as coordenadas de um ponto genérico, $P(x^1, x^2, x^3)$, da superfície média da membrana indeformada passam a ser dadas por:

$$x^1 = R\cos(\theta) \tag{2.55}$$

$$x^2 = R \sin(\theta) \tag{2.56}$$

$$x^3 = Z \tag{2.57}$$

onde *R* é o raio, agora constante, *Z*, agora tomada como variável independente, é a coordenada vertical do ponto *P* e θ é o ângulo medido a partir da horizontal X^{I} , referente à membrana em seu estado indeformado

Após a deformação provocada pelos esforços citados anteriormente, as coordenadas de um ponto genérico da superfície média da membrana deformada, $p(y^1, y^2, y^3)$, passam a ser dependentes da coordenada independente, *Z*, e são dadas por:

$$y^{1} = r(Z)\cos(\theta)$$
(2.58)

$$y^{2} = r(Z)\sin(\theta)$$

$$y^{3} = r(Z)$$
(2.59)

$$y^3 = z(Z)$$
 (2.60)

2.4.2. Componentes dos tensores métricos

Pela presente particularização, as coordenadas (θ_1, θ_2) passam a ser representados por (Z, θ) na equação (2.22). Assim as componentes covariantes, $a_{\alpha\beta}$, e contravariantes, $a^{\alpha\beta}$, dos tensores métricos tomam a forma:

$$\mathbf{a}_{\alpha\beta} = \begin{bmatrix} 1 & 0 \\ 0 & R^2 \end{bmatrix} \quad \mathbf{a}^{ij} = \begin{bmatrix} 1 & 0 \\ 0 & \frac{1}{R^2} \end{bmatrix}$$
(2.61)

Nota-se claramente que o termo $\mathbf{a}_{11} = R'^2 + Z'^2$, obtido na formulação geral, passa a assumir o valor unitário uma vez que a coordenada *S* coincide com a coordenada *Z*.

Desta forma o determinante do tensor métrico covariante, a, é dado por:

$$a = R^2 \tag{2.62}$$

Desenvolvendo-se a equação (2.25) com o auxílio das equações (2.58) a (2.60), obtém-se os tensores métricos covariantes e contravariantes no sistema deformado, tal que:

$$\mathbf{A}_{\alpha\beta} = \begin{bmatrix} r^{\prime 2} + z^{\prime 2} & 1\\ 1 & r^{2} \end{bmatrix} \quad \mathbf{A}^{\alpha\beta} = \begin{bmatrix} \frac{1}{r^{\prime 2} + z^{\prime 2}} & 1\\ 1 & \frac{r^{\prime 2} + z^{\prime 2}}{r^{2} (r^{\prime 2} + z^{\prime 2})} \end{bmatrix}$$
(2.63)

onde $\left(\right)' \frac{d()}{dZ}$

Desta forma o determinante do tensor métrico covariante, A, é dado por:

$$A = (r'^2 + z'^2)r^2$$
(2.64)

2.4.3. Invariantes de Deformação

Como exposto anteriormente, o invariante de deformação, I_3 , é a relação entre os volumes infinitesimais do elemento da membrana deformada e indeformada, sendo para um material incompressível dado por:

$$I_3 = 1$$
 (2.65)

Aplicando esta condição e usando o determinante do tensor métrico covariante no estado indeformado e deformado, equações (2.62) e (2.64), obtémse para a extensão na direção normal à superfície média da membrana a expressão:

$$\lambda_3^2 = \frac{a}{A} = \frac{R^2}{(r'^2 + z'^2)r^2}$$
(2.66)

Usando-se as equações (2.61) a (2.64) e a equação (2.66), obtém-se das equações (2.28) e (2.29), os demais invariantes de deformação, a saber:

$$I_{1} = r'^{2} + z'^{2} + \frac{r^{2}}{R^{2}} + \frac{R^{2}}{(r'^{2} + z'^{2})r^{2}}$$
(2.67)

$$I_{2} = \frac{1}{r'^{2} + z'^{2}} + \frac{R^{2}(r'^{2} + z'^{2})}{r^{2}(r'^{2} + z'^{2})} + \frac{r^{2}(r'^{2} + z'^{2})}{R^{2}}$$
(2.68)

2.4.4. Obtenção das equações de equilíbrio através do princípio da energia potencial estacionária

2.4.4.1. Energia interna de deformação: *E*

A energia elástica de deformação, E, é obtida pela integração, no volume indeformado, da função densidade de energia de deformação, w, como exposto no item 2.4.2. Assim, tem-se para a membrana cilíndrica,

$$dV = 2\pi R H dZ \tag{2.69}$$

$$E = \int_{Sb}^{St} w \, 2\pi \, RH \, dZ \tag{2.70}$$

2.4.4.2. Trabalho das forças externas

Apresenta-se a seguir o trabalho realizado para cada uma das forças aplicadas: força trativa *f*, distribuída no bordo superior da membrana ($r=R=r_t$) e pressão interna uniforme p, funções da variável independente Z.

Figura 2.4 - Coordenadas para uma membrana de forma cilíndrica com:

Zb - coordenada do bordo inferior da membrana indeformada

- zb coordenada do bordo inferior da membrana deformada
- Zt coordenada do topo da membrana indeformada
- zt coordenada do topo da membrana deformada

2.4.4.3. Trabalho realizado por uma pressão interna uniforme:

Como visto anteriormente, a pressão interna realiza trabalho sobre a variação de volume sofrida pela membrana, ou seja:

$$p\Delta V = p(v - V) \tag{2.71}$$

$$= p \left[\int_{z_l}^{z_l} \pi r^2 dz - \int_{Z_l}^{Z_l} \pi R^2 dZ \right]$$
(2.72)

$$= p \left[\int_{Zl}^{Zl} (\pi r^2 z' - \pi R^2) dZ \right]$$
(2.73)

onde, agora, tem-se $\binom{1}{dZ}$.

2.4.4.4. Trabalho realizado pela força trativa

Novamente, considerando apenas a força trativa, *f*, agindo uniformemente ao longo do bordo superior da membrana, tem-se:

$$F[z-Z]\big|_{zt} = 2\pi R_t f[z-Z]\big|_{zt}$$

$$(2.74)$$

Logo, substituindo os valores encontrados nas equações (2.70) a (2.74) na equação (2.35), tem-se para a energia potencial total:

$$\Pi = \int_{Zb}^{Zt} w 2\pi R H \, dZ - p \int_{Zl}^{Zt} (\pi r^2 z' - \pi R^2) dZ - 2\pi R_t f[z - Z]|_{Zt}$$
(2.75)

ou seja,

$$\Pi = \int_{zb}^{zt} \left[w 2\pi RH - p\pi (r^2 z' - R^2) \right] dZ - 2\pi R_t f[z - Z] \Big|_{zt}$$
(2.76)

2.4.5. Variação da energia potencial total para obtenção das equações de equilíbrio e condições de contorno

Mais uma vez, aplicando-se o princípio da energia potencial total estacionária e o lema fundamental do cálculo variacional, determinam-se as equações diferenciais e condições de contorno que regem o problema, a saber:

2.4.6. Equações diferenciais

$$2\pi RH\left\{w_{r}-(w_{r'})^{'}\right\}-p\pi H(Z-Z_{l})(2rz')=0$$
(2.77)

$$-2\pi RH(w_{z'}) + p\pi H(Z - Z_{l})2rr' = 0$$
(2.78)

2.4.7. Condições de contorno

$$2\pi R H\{w_{r'}\}\delta r\Big|_{Zb}^{Zt} = 0$$
 (2.79)

$$\left[2\pi RH(w_{z}) - p\pi H(Z - Z_{l})r^{2}\right]\delta z\Big|_{Zb}^{Zt} - 2\pi R_{t}f\,\delta z\Big|_{Zt} = 0$$
(2.80)

Considerando-se, por exemplo, a função densidade de energia de deformação Neo-Hookeana, $w = C_1(I_1 - 3)$, as equações de equilíbrio tomam a forma:

$$2\pi RHC_{1} \left\{ 2\frac{r}{R^{2}} - 2\frac{R^{2}}{r^{3}(r'^{2} + z'^{2})} - 2r'' + 2\frac{R^{2}r''}{r^{2}(r'^{2} + z'^{2})^{2}} - 4\frac{R^{2}r'(2r'r'' + 2z'z'')}{r^{2}(r'^{2} + z'^{2})^{3}} \right\} - p\pi H(Z - Z_{1})(2rz') = 0$$

$$-2\pi RH \left\{ 2z'' - 2\frac{R^{2}z''}{r^{2}(r'^{2} + z'^{2})^{2}} + 4\frac{R^{2}z'(2r'r'' + 2z'z'')}{r^{2}(r'^{2} + z'^{2})^{3}} \right\} + 2p\pi H(Z - Z_{1})rr' = 0$$

$$(2.81)$$

(2.82)